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1. Introduction 
Functionally graded materials (FGMs) are made as a mixture of two or more different 

constituents which are usually of the same dimensions and geometry. The variation of 
macroscopic material properties can be caused by varying the volume fraction of the 
constituents or by varying constituent’s material properties (caused by non-homogeneous 
temperature field, for example). The FGM links, beams, shells and solids are built as the 
mechanical parts of the mechanical, mechatronic or electronic devices in practical 
applications (from micro to macro scales) like the sensors and actuators, electric current 
conductors, etc. The multhiphysical (electro-thermo-structural) and dynamical analyses have 
to be done in virtual prototyping of such parts and devices. The semi-analytical and 
numerical methods (predominantly the Finite Element Method - FEM) have been used in 
solution of the main field equations. Several homogenizations’ methods have been used in 
modeling of the FGM structures like the extended or improved mixture rules [1], [2], the 
Representative Volume Element method – RVE and other multiscale methods [3]. The 
homogenized effective material properties have been considered in the main equations 
derivation. 

In this contribution, the differential equation of the homogenized FGM beam 
deflection and its solution will be presented which induce the transfer relations of the 2nd 
order beam theory. They will be used in the modal analysis of the FGM beams with 
polynomial continuous longitudinal and transversal variation of material properties. The 
direct integration method [4] and multilayer method [5] can be used in homogenization of the 
spatial varying material properties. The FGM beams are considered to be resting on 
longitudinal variable (Winkler) elastic foundation. The shear correction function has been 
derived from which the average shear correction factor has been calculated. Numerical 
experiments were performed to calculate the eigenfrequencies and corresponding eigenmodes 
of chosen FGM beams 
  
2. Homogenization of the spatial varying material properties 

Let us consider a two nodal straight beam element with predominantly rectangular 
cross-sectional area A and quadratic moment of inertia I (Fig. 1). The following approach can 
be used also for other cross-sectional area types. Both the fibers volume fraction  and 
the matrix volume fraction  are chosen as a polynomial functions of x, and with 
continuous and symmetrical variation through its height h with respect to the neutral plane of 
the beam. The volume fractions are assumed to be constant through the cross-section depth b. 
At each point of the beam it holds: 

( yxv f , )
)( yxvm ,

( ) ( ) 1,, =+ yxvyxv mf . The values of the volume fractions 
at the nodal points are denoted by indices i and j. The assumption of polynomial variation 
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enables an easier establishing of the beam equations and allows modeling many common 
continuous variations of beam parameters.  

 

 
 

Fig.1:  FGM beam with spatial variation of material properties. 
 
The material properties of the constituents (fibres - ( )yxp f ,  and matrix - ( )yxpm , ) 

vary analogically as stated by the variation of the volume fractions. For effective material 
property in the real beam we have got: ( yxp , )

 

( ) ( ) ( ) ( ) ( )yxpyxvyxpyxvyxp mmff ,,,,, += .   (1) 
 

In our case the elasticity modulus ( )yxE , , Poisson ratio ( )yx,ν , and mass density ( )yx,ρ  
have been calculated by expression (1). The FGM shear modulus can be calculated by 
expression: 

( ) ( )( )yx
yxEyxG
,12
),(,

ν+
= .    (2) 

 

In the homogenization of the spatial varying material properties (1), (2) the direct integration 
method will be used [4]. From the assumption that the respective property (e.g. stiffness) of 
the real beam must be equal to the analogical property of the homogenized beam, the 
homogenized longitudinal elasticity modules for: tension – compression ( )xE NH

L , 
bending , shear , and the homogenized mass density( )xEMH

L ( )xGH
L ( )xH

Lρ , can be calculated 
[6], respectively. The homogenized material properties have been used in establishing the 
shear correction function and the differential equations of free vibration of the homogenized 
FGM beam. 
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3. Differential equations of the FGM beam free vibration rested on Winkler foundation 
According to [7], the main coupled equations of the 2nd order beam theory (including 

the inertia forces, shear force and axial force) are: 
 

wkwqR 2μω−+−=′                             ϕωμ 2++=′ mQM                (3) 
eEIEIM

EI
M κϕϕ −′−=⇒−=′      ϕϕ AGwAGQ

AG
Qw ~~
~ −′=⇒+=′   (4) 

 

Here, q is the distributed transversal load (see Fig. 2); m is the distributed bending moment; 
eκ is he applied beam curvature; k is the modulus of elastic Winkler foundation; μ is the 

mass distribution; μ is the mass inertial moment distribution; ω is the natural eigenfrequency; 
R is the transversal force; Q is the shear force; M is the bending moment; ϕ  is the angle of 
cross-section rotation; w is the beam bending; EI is the bending stiffness and AG~  is the 
reduced shear stiffness of the homogenized FGM beam. We assume that all the above 
quantities are the polynomial functions of x. 
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Fig. 2: The force equilibrium in the deformed element configuration. 

 
The relation between the transversal and shear force is: 
 

( ) ' ψ= − + − +II IIQ k N w N R                   (5) 
 

where  is the resultant axial force of the 2NN II ≡ nd order beam theory, ψ  is the beam 
rotation imperfection, and k is the elastic foundation modulus for beam rotation. The 
derivation of the four coupled differential equations and their solution for the buckling force 
and eigenfrequency will be described in [6] in detail. 

 
4. Numerical experiment 
Cantilever beam (Fig. 3) is made of a mixture of titanium carbide TiC (fibres) – the elasticity 
modulus GPa, the mass density 0.480=fE 4920=fρ kgm-3, the Poisson’s ratio 20.0=fν ; 
and aluminum Al 6061-TO (matrix) – the elasticity modulus 0.69=mE GPa, the mass density 

2700=mρ kgm-3, the Poisson’s ratio 33.0=mν ; [11]. Its geometry is given with: 
m, m.  01.0== hb 1.0=L
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k x( )

 
 

Fig. 3: Cantilever beam with planar variation of material properties. 
 
Variation of the fibres volume fraction has been chosen as the polynomial function: 
 

( ) 2222
323

4000020020000000
3

400
3

400000000, yxyxxyxyxv ++−−= , 
 

that is drawn in Fig. 4.  
 

 
 

Figure 4: Volume fraction variation: A – transversal variation at point i and j,  
B – longitudinal variation at the top and bottom of the beam,  
C – planar variation along the beam length and beam height 

 
Using the extended mixture rule (1), (2), a spatial distribution of the effective elasticity 
modulus  in [GPa], the Poisson’s ratio ( yxE , ) ( )yx,ν  [-], shear modulus  in [GPa] 
and mass density 

( yxG , )
)( yx,ρ  in [kgm-3] have been calculated. The effective beam properties have 

been calculated using the expressions derived in [6]. Strong Winkler elastic foundation 
modulus has been chosen as a varying non-linear function of x: 

[kN/m( ) 2600010005000 xxxk +−= 2]. The first three bending eigenfrequencies have been 
found using the differential equations (3) – (4) for 3 options of the shear force deformation 
effect consideration: without the shear effect - ( ) 0=xς ; with the average shear correction 
factor - ; and with the shear correction function - 75.0=smk ( )xk s . The same problem has 
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been solved using a very fine mesh – 12000 of 2D PLANE42 elements of the FEM program 
ANSYS [8]. The average relative difference Δ [%] (for three chosen values of N force of 
each) between eigenfrequencies calculated by our method and the ANSYS solution has been 
evaluated. To show the effect of normal force N on the eigenfrequency, its positive value 
(tension), negative value (compression), and equal to zero have been taken into account. The 
nonzero values of the axial force have been chosen by  in all cases calculated, 
where is the 2

II
KiNN 75.0±≅

II
KiN nd order beam theory buckling force. The buckling force has been 

calculated from the differential equations by setting 0=ω . Table 1 shows the 1st bending 
eigenfrequency: 
 

Tab. 1:  The 1st eigenfrequency. 
 

N [kN]
Option: 52 0 -52 Δ  [%] 

II
KiN  [kN] 

( ) 0=xς  2 048.9 1 599.2 808.4 1.35 -67.71 
75.0=smk 2 031.5 1 585.8 797.0 0.30 -67.24 

( )xk s  2022.3 1 582.8 797.7 0.11 -67.31 
ANSYS 2 019.5 1 582.6 796.2   

 
The eigenmodes for all the considered options have been calculated which will be presented 
in [6] in detail. Significant influence of the shear force and axial force on the eigenforms has 
been observed. 
 
5. Conclusion 
 The solution results in the Table 1 obtained by our very effective method show very 
good agreement with the ANSYS solution (with very fine mesh). The best agreement of both 
results is for the 1st eigenfrequency; the shear force effect is meaningful in all calculated 
cases; the most accurate results have been obtained by consideration the shear correction 
function  in the eigenfrequency calculation. The eigenfrequency can be significantly 
influenced by the axial force. 

( )xk s
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