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1. Introduction 
The work is focused on the rigorous analysis of periodic structures that exhibit 

diffraction of electromagnetic (EM) waves in the visible domain considering both the 
polarisation states TE and TM. Based on this rigorous coupled wave analysis (RCWA) using 
Maxwell‘s equations a numerical simulation program has been developed and implemented. 
The transfer matrix method was implemented in the course of solving numerical problems. It 
was necessary to solve numerical problems of quasi-singular matrices, which are caused by 
exponentially growing amplitudes of evanescent waves. Diffraction efficiencies of various 
gratings (lamellar grating, volume phase grating, relief grating with sinusoidal profile) were 
calculated. An experimental method for determining the parameters of the surface grid was 
proposed and developed. 

RCWA was first introduced by Magnusson and Gaylord [1] and then developed 
further by Moharam and Gaylord [2], enhanced with matrix formulation by Moharam et al. 
[3]. Later, several improvements were implemented by Li [4-5]. 

In Section 2 we briefly revise the basic formulae of RCWA applied to lamellar 
gratings for modelling wave propagation through such a periodic structure. In Section 3 
transmission diffraction efficiency of various periodic structures is constructed. An inverse 
problem is formulated for determining the groove depth of relief surface grating.  
 
2. Problem formulation 

First, we formulate RCWA for a lamellar grating, which is infinitely extended in the y 
and x direction. It has a finite thickness in the z direction, thus, a planar monochromatic 
electromagnetic (EM) wave o with wavelength λ propagates in that direction in the plane x-z 
(Fig. 1).  

 
Fig. 1: Scheme of the lamellar grating with diffracted planar electromagnetic wave 

    
The grating is periodic in the x direction with spatial period p. Because of the 

symmetrical geometry the vectors of the electric field for TE polarisation (vector of electric 
field lies in the plane x-y) and the magnetic field for TM polarisation (vector of magnetic 
field lies in the plane x-y) can be simplified as 
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 )0,,0( H=H   (2) 
Then starting from Maxwell’s equations, Helmholtz equations can be derived for both 

TE (3) and TM polarisation (4). 
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All fields can be are expressed in Fourier series form 
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where F stands for E or H and kxs is the x-component of the wave vector given by Floquet’s 
theorem 
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Relative permittivity, permeability and their inverse functions are Fourier decomposed in the 
same way. 

Then the Helmholtz equations are solved in each region above (I), inside (G) and 
below (II) the thin grating. Solutions of Eq. (3), (4) are 
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where the matrix Qst couples diffraction orders of the diffracted planar waves and lt are the 
eigennumbers of Qst. Using continuity of field vectors at interfaces between layers a transfer 
matrix Mst can be formulated which determines the amplitudes of the reflection and 
transmission coefficients rs and ts. 
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Here a special renormalization method is implemented to avoid numerical instabilities caused 
by exponentially growing amplitudes [6]. 
 
3. Results 
3.1 Diffraction on volume phase grating 
 Diffraction efficiencies (defined by the ratio of the intensity of the diffracted light 
beam to the incident beam intensity in the z direction) of a thick hologram is presented. The 
very first theoretical model of this phenomenon was made by Kogelnik [7]. Phase hologram 
can be treated as a binary grating with nonzero coefficients of the -1st, 0th and 1st orders of 
Fourier series of spatial permittivity and permeability, respectively. In Fig. 2 diffraction 
efficiency of volume phase grating versus angle of incidence is presented. The thickness of 
the simulated grating was 5 μm with spatial period 1075 nm. The main index of refraction of 
the grating is 1.2 with sinusoidal space modulation of 0.05. One can observe the maximum 
efficiency of the first diffracted order at Bragg’s angle at point 0.31 which is theoretically 
also given by Eq. (11).  

 
pBragg 2

sin λϕ =  (11) 
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Fig. 2:  Diffraction efficiency of the 1st 
transmitted (continuous line), 0th transmitted 
(dashed line) and 0th reflected (dotted line) 
diffraction orders. Complementarity of orders 
can be observed. Wavelength of the incident 
planar EM wave is 650 nm 
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3.2 Determining the groove depth of surface relief grating with sinusoidal profile 
 Relief gratings with arbitrary profile can be treated as a sandwich of lamellar gratings 
with different filling factors. Transfer matrix of such a structure is the product of transfer 
matrices of the sub-layers. We designed an experiment (Fig. 3) to obtain the groove depth of 
a surface relief grating. 

 
Fig. 3: Scheme of the experiment: 1-laser, 2-polarisator, 3-photodetector, 4-grating 

Right: cross section of the grating, d – groove depth  
 
 In this experiment we used a relief surface grating with sinusoidal profile (Fig. 3) 
with unkown groove depth. The spatial period of the grating was 1000 nm, the refractive 
index of the material was 1.37. The substrate below the grating was an absorbing layer. We 
used a laser beam TE polarised with wavelength 650 nm. The angle of incident (18°) was 
near the Bragg’s angle so we measured the strongest intensity of the first diffracted order. 
Tab. 1 shows the intensities of the corresponding diffraction orders. The error of the intensity 
measuremement was 0.5 mV. 
 

Tab. 1 Intensities of diffracted orders 
 Incident wave 0th reflected 0th transmitted 1st transmitted

Intensity [mV] 208.8 16.1 167.1 9.8 
 
Then we constructed the diffraction efficiencies of the grating (Fig. 4) versus the 

groove depth using RCWA. Comparing these results to the measured data the groove depth 
of the grating can be inversely deduced, which is (186 ± 5) nm. We also measured the groove 
depth with AFM, (175 ± 5) nm.  
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Fig. 4: Diffraction efficiencies of the relief grating used in the experiment. Continuous 

line – 0th reflected, dashed line – 0th transmitted, dotted line – 1st transmitted order. 
 
3.3 Diffraction spectra of a subwavelength lamellar grating 
 Consider a binary lamellar grating (Fig. 1) with period 250 nm. The groove depth of 
the grating is 2000 nm and the filling factor is 0.5. The grating is made of material with 
relative permittivity 5. The substrate is made of the same material as the grating. Fig. 5 shows 
the transmittance and reflectance spectra for TE and TM polarisations for the normal 
incidence. One can observe that resonance peaks start to appear at a certain wavelengths. For 
our configuration this is below wavelength 360 nm for TE polarisation and 453 nm for TM 
polarisation. For larger wavelength, both transmission and reflection oscillates as a function 
of λ. These oscillations can be interpreted as Fabry-Perot resonances at thin dielectric layer 
with effective relative permittivity. This way it is possible to determine the minimal 
wavelength at which the grating starts to behave as a homogenous layer with an effective 
relative permittivity. 
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Fig. 5: Transmittance (continuous line) and reflectance (dashed line) spectra of the 0th 

diffracted order for TE (left) and TM (right) polarisation. Please note that the 1st diffracted 
order of transmission is not showed.   
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Conclusion 
 We showed that the numerical RCWA is very useful in the investigation of the 
electromagnetic response of periodic structures. Since this analysis is rigorous and vectorial, 
it can be used for modelling structures with subwavelength spatial period.  RCWA enables us 
to calculate the frequency dependence of the transmissison and reflection of the 
electromagnetic wave propagation through periodic media, such as volume phase holograms, 
binary gratings and surface relief gratings.  
 The existence of the Bragg’s angle was demonstrated for a thick phase grating. We 
constructed diffraction spectra of a subwavelength lamellar grating and showed the existence 
of resonant peaks. Investigation of effective parameters of periodic stuctures is demonstrated. 
It is also possible to obtain the groove depth of a surface relief grating constructing an inverse 
problem experiment.  
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