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1. Introduction

The quantum mechanics defines two possible eigenstates guiimtum particle: in the
extendedstate the particle can propagate freely across the systhile, w the boundstate the
particle is trapped in the vicinity of the potential minimia. 1958 P. W. Anderson [1] proved
that in disordered systems also the third quantum statéserisvhich the particle isocalized
The physical origin of the localization consists in the waeracter of the propagation as
a consequence of the interference of various componentseofvave function, scattered on
random impurities. Although the particle in the localizedalts is spatially localized, the center
of the localization is not given by any potential minima.

The most simple quantum model which enables us to investigatlization is the dis-
ordered tight binding model, which describes the propagatif electron on the disordered
d-dimensional lattice:

E¢(r) = We(R)o(r) + V 3 o(r') (1)

r

In the model, electron hops from one lattice positioto the neighboring position’. The
random potentiat(7) (|e(7)] < 1/2 mimics the disorder// measures the disorder strength.
For zero disordef)/ = 0, the model describes the propagation of electron oa-tienensional
regular lattice with energieg from the conducting band2d < E/V < +42d. For non-zero
values ofl¥/, the electron still can hop from one lattice site the neighitgpone. Since these
sites possess different potentialg), the electron propagation at long distances is more difficul
than on the regular lattice. Anderson proved that for eadhevaf I/ there exists the energy
E. (mobility edge) such that electron propagation is possiply for energiesE| < E. and

all electronic states with energi€s| > E. are localized [2]. Further increase of the disorder
causes decrease 6f. For the critical valuél = W, the mobility edgeF, reaches the band
center {£. = 0) and all electron states are localized. Phase diagram i thelV plane is
shown the Fig. 1.

r (E=0,W) insulator . . .
= 1F —¢ Fig. 1. Phase diagram of the disordered elec-
= 0.8 tron system in the energy-disorder plane. The
- system is either metallic (electron can move
s % through the sample) or insulator (electron is lo-
_g 0.4 calized). Solid line between the regions of the
'3 o 2: """""""""""""" metallic and the insulating regime is a critical
1 : line of the metal-insulator transition. Shown
% -6 5 6 o are also two critical points discussed in Sect. 4.
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Owing to the randomness of the model (1), any physical gtyaoitinterestX is a statisti-
cal variable which fluctuates as a function of the realizatibthe disorder. We have to consider
large statistical ensemble of disordered samples whidardifhly by the realization of random
energies, and to calculate the probability distributidt( X'). The distributionP(X) is in gen-
eral not self-averaging, but converges to the size-indégetfunctions [3]. As an example, we
show in Fig. 2 the probability distribution of the electramnductance (defined below by Eq. 4)
for the three dimensional disordered model (Eq. 1) at thecatipoint & = 0, W = W, shown
in Fig. 1.

d P(g)/dg

Fig. 2: The probability distributionP(g) of the
electron conductance at the critical point calcu-
lated numerically for three dimensional cubes
L x L x L with L = 10, 12, 14 and 18. Note
the logarithmic scale on the vertical axis. In-
sets show thaP(g) — 0 wheng — 0 and that
P(g) is not analytic forg = 1 [3]. Both the dis-
tribution P(g) and the mean conductance)
depend on the boundary conditions even in the
limit of infinite system sizé.
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Analytical description of the transport in disordered sys$ is possible only in the limit
of weak disorder. For strong disorder, the relevant datebeacalculated numerically for finite
size of the system. The extrapolation to the infinite systemis possible with the use of the
finite size scaling methof].

In this paper, we describe in Sect. 2 the finite size scalinthateand demonstrate its
application to the analysis of two different physical quized: the conductance of the two
dimensional system with spin-dependent hopping térgsect. 3) and the electron wave func-
tion in the three dimensional model (Sect. 4). We show thatknnumerical data enable us to
described quantitatively the critical regime of the metsialator transition.

2. Scaling analysis and univer sality

Any physical variableX is a function of system parameters and the dize Scaling
analysis assumes that in the vicinity of the critical polhbecomes the function of only one
parameter, namely the ratio of the system dizznd the correlation length

X = X(L/¢). )
The correlation lengtly diverges to infinity at the critical point,
§(r) ~ ™. ®3)

Parameter measures the closeness to the critical point: £ — E. or W — W,, andv is the
critical exponent. The scaling theory predicts that theatigisulator transition is universal: the
value of the critical exponent depends only on the dimensia@nand the physical symmetry
of the modelt Our main task is the estimation the critical exponents ofousr models and
verification of the universality of the metal-insulatorrisition.

For instance, additional magnetic field breaks the timersatesymmetry, therefore systems with and without
magnetic field posses different values.of
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Fig. 3: Two dimensional model with spin variable hopping. The enefdiyeelectron isF = 0
(band center). Left: The mean conductance as a functioneofiiborder for four values of
the size of the system. Note that the conductance does natdlepehe sizd, whenWW =
W. ~ 5.84. Middle: The mean conductance as a function of the size dytbiem/. for a few
fixed values ofV. In the metallic (insulating) regime, mean conductancedases (decreases),
respectively, when the size of the systeincreases. At the critical pointg) is constant, in
agreement with the scaling assumption. Right Figure dematestthat the mean conductance
is a function of ratioL /¢, in agreement with the scaling relation (2).

3. Mean conductance of two dimensional disordered models

The most important variable which characterizes the edadtansport in disordered sys-
tems is the conductance. Using the Economou-Soukoulis formula [5]

2 2
%g, g= %Tr t't, (4)
the conductance can be expressed in terms of transmissiplitiaest which determine the
probability that the electron propagates through the samiphe last can be calculated by the
transfer matrix method [6]. In two dimensional systems, rtfean conductance equals to the
conductivity.

We calculate numerically the dimensionless conductgrioethe two dimensional model
with spin dependent hopping tervh[7]2. The left and the middle Fig. 3 confirm that the mean
conductancég) = g. does not depend on the size of the system at the critical pdirt 5.85.
When expanding Eq. (2) in powers bf¢ < 1, we obtain with the use of Eq. (2)

G:

<g(W,L)>=gc+Ai+...:gC+A(W—WC)L*1/”+... (5)
§W)

Left Fig. 3 shows that indeed the mean conductaptés a linear function ofV in the vicinity
of the critical point. SincéV — W, changes its sign whel crossedV,, we expect thatg)
as a function of. increases (decreases) when the system is insulator (mehed)is shown in
middle Fig. 3. Right Figure 3 shows that the mean conductaepertts only on one parameter
L/, in agreement with the scaling theory. Detailed analysihefdata enables us to calculate
the critical exponent [6]

v =2.80 4 0.04 (6)

2In this model, two orientations of electron spin must be aered. The random potentiadoes not depend
on spin but electron can change the orientation of spin wio@s from one site to the neighboring one. Therefore,
the hopping tern¥ in Eq (1) is a2 x 2 matrix.
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Two dimensional disordered models with constant spin ieddpnt hopping terriv do
not possess the metallic phase [7]. The critical disordeeis,|V. = 0. Consequently, for any
non-zero value of the disorder the mean conductance sheglgases with increasing size of
the system. Numerical data shown in Fig. 4 seem to contréd&gprediction. An increase of
the mean conductance with increasihgobserved for weak disorder, resembles the metallic
phase. However, this increaseti® finite size effect The scaling behavior described by Eq.
(2) is namely observable only when the size of the systeimcreases over any characteristic
length of the system. In the present model, the electron rfrearpath? ~ W2 is extremely
large when the disordé#’” is small. The decrease of the mean conductance, predictdteby
scaling theory, is observable only for large size of theayst > (. For instance, Fig. 4
shows that for the disordé#’ = 2 the mean conductance) decreases only when the size of
the systen?., > 200. ForWW = 1, the expected decrease(gh starts atl. ~ 800.

T T \
o o) O O O
lOE 8 Do 00 oo o ] Fig. 4: The system size dependence of the mean con-
L oo 0 o o o o ] ductance of the two dimensional model defined by Eq.
1S4 2 A, MRS (1). Note the logarithmic scale on the vertical axis.
o [ w SN 2 a . 1 For weak disorder the conductance increases with
With the use of data fof. < 300 only, one can con-
0o w7 v 4 7 clude that there is a metallic regime f&F < 4. How-
S Wt ever, this is a typical finite size effect since the decrease
00y W= v J of the conductance is observed for further increase of
bl ‘ ths— s the system sizg [6].

4. |Inverseparticipation ratio
Inverse participation ratio (IPR) enables us to investigatespatial distribution of the
electron inside the disordered sample. IPR is defined as

Iq(En) = Z |(I)n(7?)|2qa (7

where®,, () is then-th electron eigenfunction with the eigenenergy. The size dependence
of IPR enables us to distinguish between the metallic andlied regime. In the localized
regime, we expect that only a few lattice sites are occupild \@,| ~ 1. Therefore/, ~ 1
does not depend on the size of the system. In the metallimesgdlectron occupies all sites of
the lattice,|V,,(7)|> ~ L=¢, andl,(E,) ~ L~%a1. Of particular interest is the critical point,
where the wave function is multifractal [9], and

I, ~ L%, (8)

Parametersl, are multifractal dimensions Since the electron eigenenergies and eigenstates
can be calculated numerically for relatively large modtis,analysis of the IPR enables us to
find the critical point and calculate the critical exponelmt.real calculation, we have to take
into account the statistical character of disordered aqurargystems. Therefore, we consider
Ngio: Samples, which differ only in the realization of the disardeor each sample, we find all
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Fig. 5: Numerical data for the inverse participation ratids, defined by Eq. (9) used for
the numerical analysis of the metal-insulator transitidrnwao critical points shown in Fig. 1
[10]. Left: Inverse participation ratioYs as a function of the size of the system for energies
E = 6.50,6.55, ...6.80 (from top to bottom). Thick solid line ig; for the critical pointE, =

6.58 (Eq. 11). The middle and the right Figures shows multifradiatensionsi, and critical
exponenty, respectively, estimated from the scaling analysi¥pf¢ = 2 — 5). Note that
the estimation of the critical exponentis more accurate for higher valugssince| ¥ ()| is
“more localized” for higherq. The most accurate estimation of the critical exponent 1.56,
found by scaling analysis of other variables [11,12] is shawthe right Figure by the dashed

line.

eigenstates with energids, inside the narrow energy interval — §FE, £ 4+ 0 E and calculate
the quantityY,(E)

1
Yo(E, L) =

> InI(E,). ()

stat samples |E—E,|<d
Fig. 1 shows that close to the critical poifit the variableY, (£, L) fulfills the scaling relation
Y (E,L)=Yf—d,InL+ A(E— E)L'" (10)
[10] with logarithmic size dependence at the critical ppint
Yy(E., L) =Y{—d,InL. (11)

This enables us to find the critical energy. The slope of thén L dependence determines the
fractal dimensionl,. The scaling analysis df,(£) in the vicinity of the critical point, enables
us to estimate the critical exponentObtained results are summarized in Fig. 5.

5. Conclusion

We demonstrated the application of the finite size scalinthoteto the analysis of the
transition of the disordered system from the metallic toitfsailating regime. The method en-
ables us to calculate the critical point and the criticalaent which determines the divergence
of the correlation length in the vicinity of the critical pui

The universality of the metal-insulator transition wasified by numerical analysis of
various physical parameters and the critical exponent aiasilated with high accuracy for dif-
ferent disordered models (for review, see [2,6] and refegsitherein). In spite of this success,
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obtained numerical results are still not generally acaepid]. One reason is that experi-
mental verification of calculated data is difficult since #iectron-electron interaction, always
presented in real materials, is not included into the the®hys difficulty can be overcome by

experiments on disordered photonic structures. Sincetadization results from the scattering
of waves propagating through disordered media, it shoulcbé it really has been, observed
also in photonic structures [14,15].

Numerically obtained value of the critical exponent for theee dimensional disordered
model (1) has been recently supported by the semi-andlyticek [16] and verified by ex-
perimental optical measurements [17,18] equivalent tdhheee dimensional disordered model
(1).

Another unsolved problem of the localization is the disagrent between numerical re-
sults and predictions of the analytical theories. At préseo analytical theory confirms nu-
merically obtained values of critical exponents. The reafsw this disagreement lies in the
statistical character of the process of localization. Tie®ty must consider all possible scatter-
ing processes on randomly distributed impurities. All pbgbvariables are statistical quantities
with broad probability distributions. It is in general natdw how to calculate analytically their
mean values. We believe that detailed numerical analysiswdus disordered systems bring
inspiration for the formulation of analytical theory.
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