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1. Introduction
The quantum mechanics defines two possible eigenstates of the quantum particle: in the

extendedstate the particle can propagate freely across the system, while in theboundstate the
particle is trapped in the vicinity of the potential minima.In 1958 P. W. Anderson [1] proved
that in disordered systems also the third quantum state exists in which the particle islocalized.
The physical origin of the localization consists in the wavecharacter of the propagation as
a consequence of the interference of various components of the wave function, scattered on
random impurities. Although the particle in the localized state is spatially localized, the center
of the localization is not given by any potential minima.

The most simple quantum model which enables us to investigate localization is the dis-
ordered tight binding model, which describes the propagation of electron on the disordered
d-dimensional lattice:

Eφ(~r) = Wǫ(~r)φ(~r) + V
∑

~r′

φ(~r′) (1)

In the model, electron hops from one lattice position~r to the neighboring position~r′. The
random potentialǫ(~r) (|ǫ(~r)| ≤ 1/2 mimics the disorder.W measures the disorder strength.
For zero disorder,W = 0, the model describes the propagation of electron on thed-dimensional
regular lattice with energiesE from the conducting band−2d ≤ E/V ≤ +2d. For non-zero
values ofW , the electron still can hop from one lattice site the neighboring one. Since these
sites possess different potentialsǫ(~r), the electron propagation at long distances is more difficult
than on the regular lattice. Anderson proved that for each value of W there exists the energy
Ec (mobility edge) such that electron propagation is possibleonly for energies|E| < Ec and
all electronic states with energies|E| > Ec are localized [2]. Further increase of the disorder
causes decrease ofEc. For the critical valueW = Wc the mobility edgeEc reaches the band
center (Ec = 0) and all electron states are localized. Phase diagram in theE − W plane is
shown the Fig. 1.
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Fig. 1: Phase diagram of the disordered elec-
tron system in the energy-disorder plane. The
system is either metallic (electron can move
through the sample) or insulator (electron is lo-
calized). Solid line between the regions of the
metallic and the insulating regime is a critical
line of the metal-insulator transition. Shown
are also two critical points discussed in Sect. 4.
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Owing to the randomness of the model (1), any physical quantity of interestX is a statisti-
cal variable which fluctuates as a function of the realization of the disorder. We have to consider
large statistical ensemble of disordered samples which differ only by the realization of random
energiesǫ, and to calculate the probability distributionP (X). The distributionP (X) is in gen-
eral not self-averaging, but converges to the size-independent functions [3]. As an example, we
show in Fig. 2 the probability distribution of the electron conductance (defined below by Eq. 4)
for the three dimensional disordered model (Eq. 1) at the critical pointE = 0, W = Wc shown
in Fig. 1.
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Fig. 2: The probability distributionP (g) of the
electron conductance at the critical point calcu-
lated numerically for three dimensional cubes
L × L × L with L = 10, 12, 14 and 18. Note
the logarithmic scale on the vertical axis. In-
sets show thatP (g) → 0 wheng → 0 and that
P (g) is not analytic forg = 1 [3]. Both the dis-
tribution P (g) and the mean conductance〈g〉
depend on the boundary conditions even in the

limit of infinite system sizeL.

Analytical description of the transport in disordered systems is possible only in the limit
of weak disorder. For strong disorder, the relevant data canbe calculated numerically for finite
size of the system. The extrapolation to the infinite system size is possible with the use of the
finite size scaling method[4].

In this paper, we describe in Sect. 2 the finite size scaling method and demonstrate its
application to the analysis of two different physical quantities: the conductance of the two
dimensional system with spin-dependent hopping termV (Sect. 3) and the electron wave func-
tion in the three dimensional model (Sect. 4). We show that known numerical data enable us to
described quantitatively the critical regime of the metal-insulator transition.

2. Scaling analysis and universality
Any physical variableX is a function of system parameters and the sizeL. Scaling

analysis assumes that in the vicinity of the critical pointX becomes the function of only one
parameter, namely the ratio of the system sizeL and the correlation lengthξ,

X = X(L/ξ). (2)

The correlation lengthξ diverges to infinity at the critical point,

ξ(τ) ∼ |τ |−ν . (3)

Parameterτ measures the closeness to the critical point:τ = E − Ec or W −Wc, andν is the
critical exponent. The scaling theory predicts that the metal-insulator transition is universal: the
value of the critical exponentν depends only on the dimensiond and the physical symmetry
of the model.1 Our main task is the estimation the critical exponents of various models and
verification of the universality of the metal-insulator transition.

1For instance, additional magnetic field breaks the time reversal symmetry, therefore systems with and without
magnetic field posses different values ofν.
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Fig. 3: Two dimensional model with spin variable hopping. The energy of the electron isE = 0
(band center). Left: The mean conductance as a function of the disorder for four values of
the size of the system. Note that the conductance does not depend on the sizeL whenW =
Wc ≈ 5.84. Middle: The mean conductance as a function of the size of thesystemL for a few
fixed values ofW . In the metallic (insulating) regime, mean conductance increases (decreases),
respectively, when the size of the systemL increases. At the critical point,〈g〉 is constant, in
agreement with the scaling assumption. Right Figure demonstrates that the mean conductance

is a function of ratioL/ξ, in agreement with the scaling relation (2).

3. Mean conductance of two dimensional disordered models
The most important variable which characterizes the electron transport in disordered sys-

tems is the conductanceG. Using the Economou-Soukoulis formula [5]

G =
e2

h
g, g =

e2

h
Tr t†t, (4)

the conductance can be expressed in terms of transmission amplitudest which determine the
probability that the electron propagates through the sample. The last can be calculated by the
transfer matrix method [6]. In two dimensional systems, themean conductance equals to the
conductivity.

We calculate numerically the dimensionless conductanceg for the two dimensional model
with spin dependent hopping termV [7]2. The left and the middle Fig. 3 confirm that the mean
conductance〈g〉 = gc does not depend on the size of the system at the critical pointW ≈ 5.85.
When expanding Eq. (2) in powers ofL/ξ ≪ 1, we obtain with the use of Eq. (2)

〈g(W,L)〉 = gc + A
L

ξ(W )
+ . . . = gc + A(W −Wc)L

−1/ν + . . . (5)

Left Fig. 3 shows that indeed the mean conductance〈g〉 is a linear function ofW in the vicinity
of the critical point. SinceW − Wc changes its sign whenW crossesWc, we expect that〈g〉
as a function ofL increases (decreases) when the system is insulator (metal). This is shown in
middle Fig. 3. Right Figure 3 shows that the mean conductance depends only on one parameter
L/ξ, in agreement with the scaling theory. Detailed analysis ofthe data enables us to calculate
the critical exponent [6]

ν = 2.80± 0.04 (6)
2In this model, two orientations of electron spin must be considered. The random potentialǫ does not depend

on spin but electron can change the orientation of spin when hops from one site to the neighboring one. Therefore,
the hopping termV in Eq (1) is a2× 2 matrix.
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Two dimensional disordered models with constant spin independent hopping termV do
not possess the metallic phase [7]. The critical disorder iszero,Wc = 0. Consequently, for any
non-zero value of the disorder the mean conductance should decreases with increasing size of
the system. Numerical data shown in Fig. 4 seem to contradictthis prediction. An increase of
the mean conductance with increasingL, observed for weak disorder, resembles the metallic
phase. However, this increase isthe finite size effect. The scaling behavior described by Eq.
(2) is namely observable only when the size of the systemL increases over any characteristic
length of the system. In the present model, the electron meanfree pathℓ ∼ W−2 is extremely
large when the disorderW is small. The decrease of the mean conductance, predicted bythe
scaling theory, is observable only for large size of the systemL ≫ ℓ. For instance, Fig. 4
shows that for the disorderW = 2 the mean conductance〈g〉 decreases only when the size of
the systemL ≥ 200. ForW = 1, the expected decrease of〈g〉 starts atL ≈ 800.
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Fig. 4: The system size dependence of the mean con-
ductance of the two dimensional model defined by Eq.
(1). Note the logarithmic scale on the vertical axis.
For weak disorder the conductance increases withL
With the use of data forL ≤ 300 only, one can con-
clude that there is a metallic regime forW < 4. How-
ever, this is a typical finite size effect since the decrease
of the conductance is observed for further increase of

the system sizeL [6].

4. Inverse participation ratio
Inverse participation ratio (IPR) enables us to investigatethe spatial distribution of the

electron inside the disordered sample. IPR is defined as

Iq(En) =
∑

~r

|Φn(~r)|
2q, (7)

whereΦn(~r) is then-th electron eigenfunction with the eigenenergyEn. The size dependence
of IPR enables us to distinguish between the metallic and localized regime. In the localized
regime, we expect that only a few lattice sites are occupied with |Φn| ∼ 1. ThereforeIq ∼ 1
does not depend on the size of the system. In the metallic regime, electron occupies all sites of
the lattice,|Ψn(~r)|

2 ∼ L−d, andIq(En) ∼ L−d(q−1). Of particular interest is the critical point,
where the wave function is multifractal [9], and

Iq ∼ L−dq(q−1). (8)

Parametersdq are multifractal dimensions. Since the electron eigenenergies and eigenstates
can be calculated numerically for relatively large models,the analysis of the IPR enables us to
find the critical point and calculate the critical exponent.In real calculation, we have to take
into account the statistical character of disordered quantum systems. Therefore, we consider
Nstat samples, which differ only in the realization of the disorder. For each sample, we find all
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Fig. 5: Numerical data for the inverse participation ratiosYq defined by Eq. (9) used for
the numerical analysis of the metal-insulator transition at two critical points shown in Fig. 1
[10]. Left: Inverse participation ratioY5 as a function of the size of the system for energies
E = 6.50, 6.55, . . . 6.80 (from top to bottom). Thick solid line isY5 for the critical pointEc =
6.58 (Eq. 11). The middle and the right Figures shows multifractaldimensionsdq and critical
exponentν, respectively, estimated from the scaling analysis ofYq (q = 2 − 5). Note that
the estimation of the critical exponentν is more accurate for higher valuesq since|Ψ(~r)|2q is
“more localized” for higherq. The most accurate estimation of the critical exponentν ≈ 1.56,
found by scaling analysis of other variables [11,12] is shownin the right Figure by the dashed

line.

eigenstates with energiesEn inside the narrow energy intervalE − δE,E + δE and calculate
the quantityYq(E)

Yq(E,L) =
1

Nstat

∑

samples

∑

|E−En|<δ

ln Iq(En). (9)

Fig. 1 shows that close to the critical pointEc the variableYq(E,L) fulfills the scaling relation

Yq(E,L) = Y c
q − dq lnL+ A(E − Ec)L

−1/ν (10)

[10] with logarithmic size dependence at the critical point,

Yq(Ec, L) = Y c
q − dq lnL. (11)

This enables us to find the critical energyEc. The slope of thelnL dependence determines the
fractal dimensiondq. The scaling analysis ofYq(E) in the vicinity of the critical point, enables
us to estimate the critical exponentν. Obtained results are summarized in Fig. 5.

5. Conclusion
We demonstrated the application of the finite size scaling method to the analysis of the

transition of the disordered system from the metallic to theinsulating regime. The method en-
ables us to calculate the critical point and the critical exponent which determines the divergence
of the correlation length in the vicinity of the critical point.

The universality of the metal-insulator transition was verified by numerical analysis of
various physical parameters and the critical exponent was calculated with high accuracy for dif-
ferent disordered models (for review, see [2,6] and references therein). In spite of this success,
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obtained numerical results are still not generally accepted [13]. One reason is that experi-
mental verification of calculated data is difficult since theelectron-electron interaction, always
presented in real materials, is not included into the theory. This difficulty can be overcome by
experiments on disordered photonic structures. Since the localization results from the scattering
of waves propagating through disordered media, it should be, and it really has been, observed
also in photonic structures [14,15].

Numerically obtained value of the critical exponent for thethree dimensional disordered
model (1) has been recently supported by the semi-analytical work [16] and verified by ex-
perimental optical measurements [17,18] equivalent to thethree dimensional disordered model
(1).

Another unsolved problem of the localization is the disagreement between numerical re-
sults and predictions of the analytical theories. At present, no analytical theory confirms nu-
merically obtained values of critical exponents. The reason for this disagreement lies in the
statistical character of the process of localization. The theory must consider all possible scatter-
ing processes on randomly distributed impurities. All physical variables are statistical quantities
with broad probability distributions. It is in general not know how to calculate analytically their
mean values. We believe that detailed numerical analysis ofvarious disordered systems bring
inspiration for the formulation of analytical theory.
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[6] P. Markǒs,acta physica slovaca56, 561 (2006).
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