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1. Introduction 

At present, new methods of measurements of ultra-small forces down to 

femtonewtons are developed [1]. Due to the central role that the conception of force plays in 

physics and with the increased interest to the investigations of systems at small space and 

time scales, these methods attract great attention. The principal problem in such 

measurements on micro- and nano-objects is connected with the influence of ever-present 

thermal noise. As distinct from macroscopic systems, the noise can essentially affect the 

motion of small objects and the forces originating from the noise can even exceed the 

conservative forces in the system. This can lead to a completely incorrect interpretation of the 

experiments. This question is not solved today and there is an interesting discussion about it 

in the literature [1-4]. In [1,4], two methods of force measurements have been used to 

determine the influence of noise on a colloidal particle near a wall in the presence of a 

gravitational field. One of the methods consisted in measuring the particle drift velocity and 

the subsequent use of overdamped Langevin equation to determine the full force acting on the 

particle. In the second method the force was determined from the known particle-wall 

interaction potential using the equilibrium Boltzmann distribution. The results of these 

methods were strongly contrasting: the obtained forces deviated both in their magnitudes and 

even in their sign. As a resolution of these discrepancies, criticized however in [2], the choice 

of the anti-Itô conception of stochastic calculus has been suggested for the case of spatially 

inhomogeneous diffusion. In the present contribution we address one more problem of the 

measurements of forces acting on microscopic and nanoscopic objects that exists even in the 

case of homogeneous diffusion (for unbounded particles and constant forces, or the ones 

linearly depending on the particle position). This problem arises with lowering the time of 
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measurement when the particles undergo unsteady motion for which the standard Langevin 

description becomes inappropriate. We show how due to the hydrodynamic aftereffect the 

experimentally determined force, even if it is known to be constant, appears to depend on the 

relation between the time of measurement and a characteristic time of the loss of memory in 

the system. 

  

2. Drift method of force measurements at short time scales 

 It follows from the overdamped Langevin equation that when a microscopic body is 

suspended in a liquid, a force F applied to a body results in a drift velocity υ = F/γ, where γ is 

the object´s friction coefficient. This is true for large constant forces, if the inertial effects are 

neglected. However, when the drift force amplitude is comparable to the effect of thermal 

noise and the force depends on the particle position, the equation for F must be corrected [1] 

since the measured velocities are statistically distributed. Moreover, an additional term -

αγ(x)dD(x)/dx, referred to as spurious force, should be added to the force F(x) = γ(x)〈υ(x)〉 

(for the force changing in the direction x). Here, D(x) is the position-dependent diffusion 

coefficient and α is a constant from the interval [0, 1]. For Brownian particles the preferred 

value is α = 1 [5] but there is no common agreement as to this choice [2], which significantly 

affects the stochastic calculus. One more problem, to our knowledge not considered so far in 

the interpretations of force measurements, arises in situations when inertial effects (and, 

consequently, the memory in the particle dynamics) can play a role [6]. Even if the applied 

force is position independent, but the observation times become comparable to the vorticity 

time τR = R
2ρ/η, where R is the particle radius and ρ and η are the density and viscosity of 

the solvent, the discussed method is not applicable. We will show it coming from the 

generalized Langevin equation [7], 
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Here, η(t) is a random noise force driving the particles of mass M, and F is a regular force to 

be determined. The force η is, due to the fluctuation dissipation theorem, connected to the 

dissipative properties of the system. We will consider the very realistic case when the 

memory in the system is of the hydrodynamic kind, i.e., the resistance force against the 

particle motion follows from the non-stationary Navier-Stokes equations of motion for 

incompressible fluids [8]. Then the kernel Γ is 1/2( ) ( / )Rt tγ τ πΓ = . The usual Brownian 
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relaxation time is connected to the Stokes friction coefficient as τ = M/γ . Equation (1) for F = 

0 describes the zero-mean fluctuations υ(t). Here we are interested in the question how the 

thermal noise influences the determination of the force F. Let F be constant, as it is for a 

freely falling particle in a fluid. We express the velocity as υt = υ + υ*. The deterministic part 

υ* (the drift velocity) obeys the averaged Eq.(1), i.e. the equation without the random force 
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We can choose the initial condition as υ*(0) = 0. Then the Laplace-transformed Eq.(2) has 

the following solution for *( )sυ% = Λ{υ*(t)}: 
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where ( )( )1/2
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The inverse transform has the form 
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The asymptotic behaviour of this solution at t → 0 is υ*(t) ≈ Ft/M. At long times we have 

1/2*( ) ( / ) 1 ( / ) ...Rt F M tυ τ τ π ≈ − +  . Using these formulas, the force F can be determined 

through the measured mean velocity υ*(t) at any time t. At long times, due to the 

hydrodynamic aftereffect, this velocity depends on the relation τR/t and very slowly 

approaches the limiting value F/γ. The determined force is 

( )* 1 /RF tγυ τ π≈ + ,        τR/t << 1.    (5) 

The stochastic motion of the particle, for constant γ, does not influence the determination of 

the force, since its contribution to the drift velocity is zero. It is easy to see that our correction 

of the standard result for the force, F = γυ*, can be significant. To demonstrate it, let us turn 

to the recent work [6]. The smallest observation times in this experiment were ~ 10
-8
 s. At 

such times the force should be proportional to υ*/t. At longer times, when the ratio τR/t is 

small, Eq. (5) applies. For spherical particles 1µm in radius, which are suspended in water at 

room temperatures, we have τR ~ 10
-6
 s.  Thus, at the times ~ 10

-5
 s the correction represents 

almost 20% and slowly drops with the increase of time, approaching 1% of γυ* at t ≅ 3ms. 
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3. Conclusion 

In conclusion, we have obtained an exact solution for the drift velocity of a Brownian 

particle in an incompressible fluid under the action of a constant force, taking into account 

the hydrodynamic memory in the particle motion. This velocity is proportional to the applied 

force but depends in a complicated manner on the time of observation t. At short times it is 

proportional to t and at long times it contains algebraic tails, the longest-lived of which being 

~ t
-1/2
. Due to this the velocity very slowly approaches the limiting value F/γ. As a 

consequence, the force F can significantly differ from the value that would be extracted from 

the drift measurements neglecting the inertial effects, which is a standard assumption in the 

interpretation of such experiments [1-4]. The presented method can be equally applicable in 

the case of force linearly depending on the particle position. For nonlinear forces, first the 

open question about the choice of convention to be used in stochastic calculus should be 

resolved. 
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