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1. Introduction 

One hundred years have passed since the explanation of the phenomenon of Brownian 

motion (BM) by Einstein, Smoluchowski and Langevin. Like other great inventions, a need 

was generated for a special mathematical description. It has taken the new concept of 

stochastic differential equations to express the molecular kinetic aspect of this phenomenon. 

The fluctuation force exerted on the Brownian particle (BP) by the molecules of a 

surrounding medium was depicted by an additive noise in the differential equation of motion 

of a BP [1]. For small (micron-sized or smaller) particles, the always present thermal 

fluctuations essentially influence their motion. For a BP in a potential well we can then speak 

about a noisy oscillator. Experimentally such situations have been realized for colloidal 

particles in optical traps [2]. In several papers the experiments on a BP confined in a moving 

harmonic well have been theoretically described [3, 4]. However, this description can be 

applied only for long observation times since it ignores the inertial and memory effects in the 

particle motion. For a colloidal particle in a solvent these effects should necessarily be taken 

into account at short times when the expected dynamics is ballistic. Also at long times the 

mean square displacement (MSD) of the particle can exhibit an “anomalous” (different from 

that in the Einstein theory) time dependence. In the present contribution we describe the BM 

with memory, using the generalized Langevin equation (LE). The application of the 

Vladimirsky rule [5] allowed us to exactly solve this integro-differential equation when its 

memory kernel exponentially decreases with the time. 
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2. Oscillator driven by correlated noise 

 If the random force driving the particles is not the delta-correlated white noise but a 

coloured noise, the resistance force against the particle motion cannot be arbitrary (e.g., it 

cannot be the Stokes one as in the standard Einstein and Langevin theories) but must obey the 

fluctuation-dissipation theorem. Then the equation of motion for the BP has a non-Markovian 

form of the generalized LE [6] that, for a particle of mass M in a harmonic potential U = 

kx
2
/2, is  

( ) ( ) ( ) ( ) ( )2

0

d

t

M t M t t t t M x t f tυ υ ω′ ′ ′+ Γ − + =∫& ,    (1) 

where 〈f(t)f(0)〉 = kBTΓ(t). The memory in the system is described by the kernel 

( ) exp( )M m mt tω ω ωΓ = − . Here, ω = (k/M)
1/2

 is the oscillator frequency and ( ) ( )t x tυ = &  is the 

velocity of the BP. Let the correlated random force f(t) arises from the standard LE 

( ) ( ) ( )mu t u t tγ η+ =&  with the white noise η(t) and the friction factor γ in the Stokes force 

proportional to the velocity u(t) of the surrounding particles. The characteristic relaxation 

times of the particles of mass m and the BP of mass M, respectively, are τm = 1/ωm = m/γ and 

τM = 1/ωM = M/γ. According to the rule first derived in [5], the stochastic LE can be 

converted to a deterministic equation for the quantity ( ) ( )V t tξ= & , where ( )tξ  is the particle 

MSD [7], (0) (0) 0V ξ= =& , and the force f(t) is replaced with 2kBT. Using the Laplace 

transformation, this equation for V% (s) = Λ{V(t)} reads  
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The inverse transformation, found after expanding this expression in simple fractions, is 

( ) ( )
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i i
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V t A s t

M =

= ∑ , 

and the MSD is obtained by simple integration,  
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Here si are the roots of the cubic polynomial in the denominator of Eq.(2) and A1 = (s1 + 

ωm)(s1 – s2)
-1

(s1 – s3)
-1

. The coefficients A2 and A3 have the same form with the cyclic change 

of the indexes 1→2→3→1. These constants obey the following relations: 
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which can be used in calculations of the asymptotic behaviour of the solution (3). For ξ(t) at t 

→ 0 we find (the main term being independent on the driving force intensity) 

( )
2

2 21 ...
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≈ − + 

 
 .        (4) 

At long times the asymptote can be written in the form (independent on m), different from the 

Einstein result for diffusion, 

( )
2

2
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1 expB
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k T t
t
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ω
ξ

ω ω

  
≈ − −  

  
 .      (5) 

In the absence of the harmonic force (ω → 0) we have the expected result 

( ) 2 /Bt k Ttξ γ→ ∞ ≈ , which follows also from the exact solution (3) and the properties of Ai. 

 Now, let us take into account the possibility that the harmonic well moves with the 

velocity υ* along the axis x [3]. The position of the BP will be denoted by xt = x + x*, where 

x obeys the stochastic LE (1) and x* is the solution of the inhomogeneous deterministic 

equation 

( ) ( ) 2 2

0

* * d * *

t

x t t x t t x tω ω υ′ ′ ′+ Γ − + =∫&& & .         (6) 

The full solution obeys the GLE (1) with x in the last term on the left hand side replaced by xt 

- υ*t and υ changed to t txυ = & . The solution for x*(t) with the initial conditions 

*(0) *(0) 0x x= =&  can be easily obtained in a similar way as above. Using the Laplace 

transformation we obtain ( ) [ ]{ }2 1 1* * exp( ) 1i i i ii
x t A s s t s tω υ − −= − −∑ , with the following 

limits at short and long times, respectively: 2 3*( 0) * / 6x t tω υ→ ≈  and ( )* *x t tυ→∞ ≈ . 

The full MSD of the particle is calculated as X(t) = ξ(t) + [x*(t)]
2
 . 

 

3. Conclusion 

The theory of the Brownian motion is intensively developed and along with the 

remarkable improvements of the experimental possibilities it finds more and more 

applications, especially in the science and technology of small systems. It has been found that 

in many situations [6] the standard Langevin equation should be generalized to take into 

account the effects of finite correlation time in the noise driving the particles. In our 
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contribution, a specific problem of the motion of a Brownian particle under the influence of 

an exponentially correlated stochastic force has been solved within the classical 

consideration.  As distinct from the previous works, the inertial effects have been taken into 

account. We have examined the case of a free particle as well as the motion of a particle in a 

moving harmonic trap (a stochastic oscillator with memory). From the generalized Langevin 

equation the exact MSD ξ(t) of the particle has been calculated and analyzed in detail. At 

short times ξ(t) corresponds to the ballistic motion ~ t
2
. At t → ∞  the MSD converges to a 

constant strongly depending on the oscillator frequency ω  and agrees with the Einstein 

diffusion limit when ω → 0. The full MSD for a trapped particle corresponds to the 

experiments on colloids [3]. It can be also used to describe the charge fluctuations in 

nanoscale electric circuits in contact with the thermal bath [8]. The solution of the latter 

however requires a further development of the presented approach to the case when f(t) in 

Eq.(1) is the quantum noise. 
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