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1. Introduction 

The reliability of new material structures intended to signal processing is one 

component of their quality. An electronic device has three phases of existence: the 

development phase, production phase and working phase. The development phase is very 

important for reliability growth. In this phase the constructor implements three basic 

components of reliability - reliability, longevity and maintainability in the electronic device. 

 It is difficult to present a precise (specific) definition of the reliability growth model. 

The reliability growth model provides usable instructions for the constructor to realize 

construction changes, corrective interventions in the development phase of the electronic 

device. In this contribution we proposed and also verified an unconventional reliability 

growth model of new electronic structures [1]. 

 

2. Definition of Reliability Growth Model (RGM) 

Let X(n) be one-parametric discrete stochastic process of reliability increase of the 

electronic device, where n is for example time, number of failures in time interval, number of 

experiments. Let this stochastic process be asymptotically stationary and ergodic on 

parameters mi. Let s1, s2, …, sk be assessment statistics dependent  on process X(n) for 

parameters m1, m2 , … , mk, of function f(m1, m2, …, mk; X). Then the function f(m1, m2, …, 

mk; X) is the reliability growth model [2]. 

It can be for in formulated in terms of the Poisson process. 

The Poisson process is a process representing „full - stochastic occurrence“ on an 

event (for example failure creation of a device) in time. This model is a process with 

continuous time t and discrete values of a stochastic process. It is a model with independent 

step increases [3]. 

The principle of reliability growth models, which is based on the Poisson process 

homogeneity testing, is in fact that a system is either non-stationary or stationary. It means 
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that, if there are many early failures, as well as high intensity inherent failures in the system, 

the constructor must do construction changes with the goal to increase the reliability of the 

system. A Poisson process with non-stationarity is a non-homogenous Poisson process, a 

Poisson process with stationarity is a homogenous Poisson process. The reliability growth 

model is finished in time tb (boundary time), from time tb process is statistically stationary. 

A generally stochastic process has different types of non-stationarity with its four 

basic characteristics [4]: 

- mean value m(t), 

- dispersion D(t), 

- correlation function R(t1,t2), 

- density of probability distribution f(t) in time t. 
 

New unconventional reliability growth models are based on a simple idea of Poisson 

homogeneity testing in time reliability tests of repairable systems. The goal is to find 

boundary time tb using statistical methods, from which the Poisson process is homogenous 

(stationary). 

For homogeneity mean value of Poisson process testing  it is necessary to know 

actual data from the experiment – number of failures in a set up time interval ∆t (for example 

∆t = 20 hours) in sequence 0-20 h, 20-40 h, 40-60 h,..... . Again we need information if in 

actual time interval is failure 0., 1., 2., ..., i-s. Zero failure means no failure in the operating 

ability of systems. 

The statistic estimation of mean value ( )tm̂  in time tk, k = 1, 2, 3,... we calculated 

using the equation [4] :  
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/ – number of systems in a  reliability test, i – integer . 

For homogeneity testing of mean value of Poisson process it  is necessary to know 

statistic estimation of dispersion ( )tD̂ in actual times tk. We can calculate it using the 

equation [4] : 
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In next steps we applied first (fragile) criterion of Poisson process homogeneity 

testing with mean value m(t), second (strong) criterion with mean value m(t) and third 

criterion with mean value m(t). We found the boundary time tb, in which it is possible to 

finish process RGM. 

 

3. Experimental results 

For verification of proposed RGM algorithm based on the Poisson process 

homogeneity testing of mean value ( )tm̂  and RGM based on Poisson process homogeneity 

testing of dispersion ( )tD̂  we used data from a real reliability test. In the reliability test were 

160 electronic systems, the time of the whole test was 1000 hours, the time interval ∆t was 20 

hours.  

Input data were times of first, second, ..., r-s failure in 20 hours time intervals. We 

calculated number of first n1,  second n2,...r-s nr failures in time moments 20, 40, 60,..., 1000 

hours. Using algorithm from chapter 2 we calculated estimations of mean values in time 

moments tk = 20, 40, 60, ... ,1000 hours Poisson process.  

The calculations showed, that the first part of the renewal function (from 0 to 220 

hours) it is non-linear – non-homogenous Poisson process with non-stationary increases. 

Second part, in time interval 220 – 1000 hours, better in time interval 500 – 1000 hours is 

possible to approximate by linear dependence. This is a homogenous Poisson process with 

stationary increases of failures.  

We calculated for every time moments tk values of estimation of dispersion ( )tD̂ .  

First (fragile) criterion 

We calculated absolute value of relative increase of mean value m
δ̂  (auxiliary 

statistical parameter). On the base of experience we can say, that boundary value is mδ̂  = 

0,03 and then we can determine boundary time tk – the time moment for begining of 

homogenous Poisson process.  

Second (strong) criterion 

We calculated values of average transposition mean quadratic deviations klδ̂ . Using 

the equation [5]: 
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tmax = 1000 hours, tmin = 20 hours, m = 50, we calculated  ∆topt = 148 hours. We round this 

value of interval to ∆topt = 140 hours. Then boundary time for homogenous Poisson process is 

tb = 220 hours. RGM model is finished. 

Third criterion 

We used statistic increases of mean values km̂∆ in time moments 0-140, 140-280, 

280-420,…, 840-980 hours. We created a graph of values km̂∆ . We found approximation line  

y = const using method of minimum squares. Using the graph we define boundary time tk – 

the Poisson process is homogenous. It is tk = 500 hours. Applying censorship value from time 

interval (420-560) hours boundary time is tk = 350 hours. 

 

4. Discussion 

Unconventional reliability growth models of electronic devices (hardware) are very 

specific tools used during development phase. We verify algorithms of new model on data 

from real reliability test of electronic devices.  

The advantage of new reliability growth models is the simplicity of processing results of 

experiment, undemanding calculation and authentic results if number of tested electronic 

devices is sufficient (minimum 30). 
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