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1. Introduction 

At the late sixtieth and early seventieth of the last century the famous long-time 

“tails” of the molecular velocity autocorrelation function (VAF) have been discovered. First 

in the computer experiments, and later they have been confirmed theoretically and 

experimentally. This discovery doubted the commonly accepted view on the microscopic and 

macroscopic properties of liquids as being characterized by very different time scales, and 

extended the range of the applicability of classical hydrodynamics. It is less known that these 

tails have been correctly predicted much earlier in the work by Vladimirsky and Terletzky 

[1], the authors of the first hydrodynamic theory of the Brownian motion (BM). The 

hydrodynamic approach has essentially enriched the classical Einstein theory valid only for 

∞→t . It has also revealed the limits of its later generalization for arbitrary times. Such a 

generalization was made by Langevin who proposed the first stochastic differential equation 

for the description of the memoryless BM. In the hydrodynamic theory the Langevin equation 

(LE) is modified to take into account a possible memory in the particle motion. In the present 

contribution we give an exact solution to the LE with hydrodynamic memory. It is essential 

that we use a simple method that is in linear consideration applicable for systems with any 

other kind of memory. The VAF has been found together with the mean square displacement 

(MSD) for Brownian particles (BP) trapped in a harmonic well. 
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2. Langevin equation for the Brownian motion with hydrodynamic memory 

The standard LE for the velocity υ(t) = dx/dt of the BP has the form 

( )d
2

d
m D t

t

υ
γυ ξ= − + ,                                                     (1) 

where the coefficient of friction γ  for a spherical particle with the radius R  and the mass m  

is the Stokes one, 6 Rγ π η=  (η  is the dynamic viscosity), and the erratic motion of the 

particle, resulting from random, uncompensated impacts of the molecules of the surrounding 

fluid is described by the stochastic (white noise) force ~ ξ(t) with the statistical properties 

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t´)〉 = δ(t – t´) and the intensity BD k Tγ=  ( Bk  is the Boltzmann constant and 

T  is the temperature). The Stokes friction force, which is traditionally used to describe the 

friction that a particle feels during its motion in a liquid, is in fact valid only for the steady 

motion of the particle (at long times), and should be replaced by the expression [2] 
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where ρ  is the density of the solvent. Equation (2) is valid for all times /t R c>>  ( c  is the 

sound velocity), i.e., except the very short times when the solvent compressibility must be 

taken into account. This expression has been derived by Boussinesq in 1885 [3], used in the 

mentioned work [1], and later brought to wider attention by Hinch [4]. It is seen from Eq.(2) 

that for fluids with the density comparable to the density of the BP (which is the usual case of 

freely buoyant particles), the terms additional to the Stokes one cannot be neglected since in 

the equation of motion for the particle they are of the same order as the inertial term. Here we 

will consider a more complicated problem of the movement of the BP, when the particle is 

subjected to an external harmonic potential. 

 

3. Solution of the hydrodynamic Langevin equation 

Now we show that the solution can be obtained very easily as follows. Based on 

another little known work [5], instead of Eq.(1) with the force (2) we can solve the 

deterministic “equation of motion” for the quantity ( ) d ( ) / dV t X t t=  with X(t) being the 

particle MSD, 
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where 2/smmM +=  ( sm  is the mass of the solvent displaced by the particle) and 

Mk /2

0 =ω  ( k  is the force constant of an external harmonic potential). The characteristic 

times in this equation are γτ /M=  (the relaxation time of the BP) and 2 /R Rτ ρ η=  (the 

vorticity time). The constant “force” 2 Bk T  at the right begins to act on the particle at the time 

0t = ; up to this moment the particle is at rest together with the liquid. The problem has to be 

solved with the evident initial conditions (0) (0) 0V X= = . It is also seen from Eq.(3) that 

0(0) 2V = Φ& . Taking the Laplace transformation Λ of Eq.(3), we obtain for ( )V s% = Λ{V(t)} 
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Its inversion gives the solution 

( ) ( ) ( )∑
=

−Φ=
4

1

2

0 erfcexp2
i

iiii tztzzbtV ,                                          (5) 

where iz  are the roots of the quartic equation 4 1/2 1 3 1 2 2

0 0Rz z zτ τ τ ω− −+ + + =  and the 

coefficients bi can be easily determined decomposing the right hand side of Eq.(4) in simple 

fractions. The VAF Φ(t) is expressed by a similar equation, if one divides V(t) by 2 and 

replaces ii zb  with 3

ii zb . For 02

0 →ω  this expression exactly corresponds to the solutions 

found in Refs. [4, 6] and contains the long-time tail discovered already in the computer 

experiments [7, 8]. In our more general case it follows from Eq.(5) for the VAF at ∞→t  

that  
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i.e., the longest-lived tail is ~ 2/3−t . Finally, the MSD of the BP is found integrating the 

function V(t) from 0  to t , 
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In the long time limit it agrees very well with experiment [9]. The asymptotic expansion of 

this equation for ∞→t  is 
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4. Conclusions 

For the BP moving in a fluid the standard Langevin equation does not represent a 

good model and the more correct hydrodynamic description should be used. We have solved 

the problem of the hydrodynamic BM of a particle in an external harmonic potential. Our 

description corresponds to a number of recent experiments on particles in optical traps. The 

obtained solution is exact for incompressible fluids described by the nonstationary Navier-

Stokes equations. The found VAF and MSD generalize the known results in the absence of 

the potential well. Although the detection of the predicted long-time tail effect requires high 

spatial and temporal resolution, our results could be verified in similar experiments as in [9], 

where the hydrodynamic theory of the BM of a free particle has been definitely confirmed. 
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