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1. Introduction 

The semiconductor industry has made amazing progress in last fifty years. The 

progress goes from big and robust elements to very tiny and efficient chips. Today the 

technology is on the way to cross all known technical as well as physical limits. Engineers 

are working with clusters of several atoms and currents of several electrons. This technology 

obviously needs quantum mechanical interpretation. Fortunately, today we have very good 

tool which has been created by collaborative work of many scientists in the past. Although 

today we have very complex and pretty theory its application without detailed knowledge is a 

dangerous matter. The motivation of this work is to show that manipulation with a very thin 

potential barrier needs not only a new kind of technology but also sensible application of 

numerical techniques. The goal of this paper is to advertise on difference between exact and 

WKB solutions if are applied on 1 nm thin potential barrier. 

 

Fig.1: The triangular barrier shape which is used in simulation. The shape provides a good 

approximation for real thin slide semiconductor structures. The thickness is 2a=1nm and the 

barrier height is U0=3eV.   Energy E means instant energy of interaction between quantum 

mechanical particle and potential barrier. 

 

2. Theory 

 The barrier is assumed as a triangular shape with constant increase and decrease 

potential from left to right as is shown in Fig.1. As usual [1] the space is divided into four 
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subspaces. The subspaces are referred as I. – IV.  From mathematical point of view the 

property of subspaces are described in Eqs. 1. 
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To simplify further calculations we introduce two new variables k0 and q0: 
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Solution of Schrödinger equation depends on actual subspace. In two subspaces (I. and IV. ) 

the particle is free. In other two subspaces (II. and III.) the particle is accelerated and 

decelerated, respectively. The solution can be written as a superposition of left and right 

moving waves which obey:   
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ζ  and η  are transformed variables containing information about the potential barrier [1]. 

The coefficients α,β,γ,δ,ε  and ϑ have to be found from the boundary conditions of the wave 

function at x = -a, x = 0 and x = a. The wave function and its derivative have to be continuous 

everywhere, so we have got (after some algebra) six equations:  
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where ρ  and µ  are new variables expressed as: 
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After other portion of algebra we have got expression for transmission coefficient T:   
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where Ai(x) and Bi(x) are  Airy functions. Both are solutions of Airy equation:      

                           ( ) ( ) 0=−′′ xkfxf                                                                                          (7) 

and Ai‘(x) and Bi‘(x) are derivatives of Airy functions. The solution (6) is exact in the frame 

of quantum mechanical theory.  The key stone of quasi-classical approximation is the fact 

that the wave changes in wavelength  
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must be small over one wavelength. This could be expressed as: 
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Last expression is rewritten using ρ and µ: 
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If the condition of quasi-classical solution 1|/| <<< dxdλ  (WKB approximation) is applied 

we could write: 

 1|| >>>ρ  and  1||  >>>µ                                                                              (11) 

Using asymptotic expressions of Airy functions for t>>>1:    
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After some algebra and application of asymptotic expressions (12) the expression (6) could 

be rewritten in more simple form: 
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And in more usual form: 
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Equation (14) gives transmission coefficient in WKB approximation. The equation could be 

applied on general form of potential barrier if the condition (9) is applicable. This is 

obviously not true in the case of abrupt junction with potential rapid slope. In Fig. 2 is plotted 

transparency T of a triangle potential barrier which is schematically plotted in Fig. 1.  

Abscissa axis shows energy E in ratio scale of barrier amplitude U0. Ordinate axis gives 

potential barrier transparency T. Relation between exact and WKB approximation shows that 

the error could be more as 100 percent if the thickness of potential barrier is about 1nm. 

 

Fig 2: Transparency T of a triangle potential barrier which is schematically plotted in Fig. 1.  

Abscissa axis shows energy E in ratio scale of barrier amplitude U0. Ordinate scale gives 

potential barrier transparency T.  Exact solution according Equation (6) is plotted in the 

solid line.  WKB approximation is plotted in the dashed line.  

3. Conclusion 

We have investigated the quantum-mechanical transmission of an electron in narrow 

potential barrier. It has been shown that application of WKB approximation could give 

enormous error if the slope of potential is rapid. Edification of this work is that unreasonable 

application of numerical approximations without the deep knowledge of theory should give 

wrong result. This we should remember every second, every day. 
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